\(\int \frac {x}{a x+b x^3+c x^5} \, dx\) [85]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [B] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 18, antiderivative size = 150 \[ \int \frac {x}{a x+b x^3+c x^5} \, dx=\frac {\sqrt {2} \sqrt {c} \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {\sqrt {2} \sqrt {c} \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c} \sqrt {b+\sqrt {b^2-4 a c}}} \]

[Out]

arctan(x*2^(1/2)*c^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2))*2^(1/2)*c^(1/2)/(-4*a*c+b^2)^(1/2)/(b-(-4*a*c+b^2)^(1/2
))^(1/2)-arctan(x*2^(1/2)*c^(1/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2))*2^(1/2)*c^(1/2)/(-4*a*c+b^2)^(1/2)/(b+(-4*a*c+
b^2)^(1/2))^(1/2)

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {1599, 1107, 211} \[ \int \frac {x}{a x+b x^3+c x^5} \, dx=\frac {\sqrt {2} \sqrt {c} \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {\sqrt {2} \sqrt {c} \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{\sqrt {b^2-4 a c} \sqrt {\sqrt {b^2-4 a c}+b}} \]

[In]

Int[x/(a*x + b*x^3 + c*x^5),x]

[Out]

(Sqrt[2]*Sqrt[c]*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[b - Sqrt[b^2
 - 4*a*c]]) - (Sqrt[2]*Sqrt[c]*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqr
t[b + Sqrt[b^2 - 4*a*c]])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 1107

Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(-1), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[c/q, Int[1/(b/
2 - q/2 + c*x^2), x], x] - Dist[c/q, Int[1/(b/2 + q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*
a*c, 0] && PosQ[b^2 - 4*a*c]

Rule 1599

Int[(u_.)*(x_)^(m_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(n_.), x_Symbol] :> Int[u*x^(m +
 n*p)*(a + b*x^(q - p) + c*x^(r - p))^n, x] /; FreeQ[{a, b, c, m, p, q, r}, x] && IntegerQ[n] && PosQ[q - p] &
& PosQ[r - p]

Rubi steps \begin{align*} \text {integral}& = \int \frac {1}{a+b x^2+c x^4} \, dx \\ & = \frac {c \int \frac {1}{\frac {b}{2}-\frac {1}{2} \sqrt {b^2-4 a c}+c x^2} \, dx}{\sqrt {b^2-4 a c}}-\frac {c \int \frac {1}{\frac {b}{2}+\frac {1}{2} \sqrt {b^2-4 a c}+c x^2} \, dx}{\sqrt {b^2-4 a c}} \\ & = \frac {\sqrt {2} \sqrt {c} \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {\sqrt {2} \sqrt {c} \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c} \sqrt {b+\sqrt {b^2-4 a c}}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.05 (sec) , antiderivative size = 129, normalized size of antiderivative = 0.86 \[ \int \frac {x}{a x+b x^3+c x^5} \, dx=\frac {\sqrt {2} \sqrt {c} \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {b-\sqrt {b^2-4 a c}}}-\frac {\arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c}} \]

[In]

Integrate[x/(a*x + b*x^3 + c*x^5),x]

[Out]

(Sqrt[2]*Sqrt[c]*(ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]]/Sqrt[b - Sqrt[b^2 - 4*a*c]] - ArcTan
[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]]/Sqrt[b + Sqrt[b^2 - 4*a*c]]))/Sqrt[b^2 - 4*a*c]

Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.06 (sec) , antiderivative size = 38, normalized size of antiderivative = 0.25

method result size
risch \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{4}+\textit {\_Z}^{2} b +a \right )}{\sum }\frac {\ln \left (x -\textit {\_R} \right )}{2 c \,\textit {\_R}^{3}+\textit {\_R} b}\right )}{2}\) \(38\)
default \(4 c \left (-\frac {\sqrt {2}\, \arctan \left (\frac {c x \sqrt {2}}{\sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{4 \sqrt {-4 a c +b^{2}}\, \sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}-\frac {\sqrt {2}\, \operatorname {arctanh}\left (\frac {c x \sqrt {2}}{\sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{4 \sqrt {-4 a c +b^{2}}\, \sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )\) \(117\)

[In]

int(x/(c*x^5+b*x^3+a*x),x,method=_RETURNVERBOSE)

[Out]

1/2*sum(1/(2*_R^3*c+_R*b)*ln(x-_R),_R=RootOf(_Z^4*c+_Z^2*b+a))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 613 vs. \(2 (114) = 228\).

Time = 0.28 (sec) , antiderivative size = 613, normalized size of antiderivative = 4.09 \[ \int \frac {x}{a x+b x^3+c x^5} \, dx=-\frac {1}{2} \, \sqrt {\frac {1}{2}} \sqrt {-\frac {b + \frac {a b^{2} - 4 \, a^{2} c}{\sqrt {a^{2} b^{2} - 4 \, a^{3} c}}}{a b^{2} - 4 \, a^{2} c}} \log \left (2 \, c x + \sqrt {\frac {1}{2}} {\left (b^{2} - 4 \, a c - \frac {a b^{3} - 4 \, a^{2} b c}{\sqrt {a^{2} b^{2} - 4 \, a^{3} c}}\right )} \sqrt {-\frac {b + \frac {a b^{2} - 4 \, a^{2} c}{\sqrt {a^{2} b^{2} - 4 \, a^{3} c}}}{a b^{2} - 4 \, a^{2} c}}\right ) + \frac {1}{2} \, \sqrt {\frac {1}{2}} \sqrt {-\frac {b + \frac {a b^{2} - 4 \, a^{2} c}{\sqrt {a^{2} b^{2} - 4 \, a^{3} c}}}{a b^{2} - 4 \, a^{2} c}} \log \left (2 \, c x - \sqrt {\frac {1}{2}} {\left (b^{2} - 4 \, a c - \frac {a b^{3} - 4 \, a^{2} b c}{\sqrt {a^{2} b^{2} - 4 \, a^{3} c}}\right )} \sqrt {-\frac {b + \frac {a b^{2} - 4 \, a^{2} c}{\sqrt {a^{2} b^{2} - 4 \, a^{3} c}}}{a b^{2} - 4 \, a^{2} c}}\right ) - \frac {1}{2} \, \sqrt {\frac {1}{2}} \sqrt {-\frac {b - \frac {a b^{2} - 4 \, a^{2} c}{\sqrt {a^{2} b^{2} - 4 \, a^{3} c}}}{a b^{2} - 4 \, a^{2} c}} \log \left (2 \, c x + \sqrt {\frac {1}{2}} {\left (b^{2} - 4 \, a c + \frac {a b^{3} - 4 \, a^{2} b c}{\sqrt {a^{2} b^{2} - 4 \, a^{3} c}}\right )} \sqrt {-\frac {b - \frac {a b^{2} - 4 \, a^{2} c}{\sqrt {a^{2} b^{2} - 4 \, a^{3} c}}}{a b^{2} - 4 \, a^{2} c}}\right ) + \frac {1}{2} \, \sqrt {\frac {1}{2}} \sqrt {-\frac {b - \frac {a b^{2} - 4 \, a^{2} c}{\sqrt {a^{2} b^{2} - 4 \, a^{3} c}}}{a b^{2} - 4 \, a^{2} c}} \log \left (2 \, c x - \sqrt {\frac {1}{2}} {\left (b^{2} - 4 \, a c + \frac {a b^{3} - 4 \, a^{2} b c}{\sqrt {a^{2} b^{2} - 4 \, a^{3} c}}\right )} \sqrt {-\frac {b - \frac {a b^{2} - 4 \, a^{2} c}{\sqrt {a^{2} b^{2} - 4 \, a^{3} c}}}{a b^{2} - 4 \, a^{2} c}}\right ) \]

[In]

integrate(x/(c*x^5+b*x^3+a*x),x, algorithm="fricas")

[Out]

-1/2*sqrt(1/2)*sqrt(-(b + (a*b^2 - 4*a^2*c)/sqrt(a^2*b^2 - 4*a^3*c))/(a*b^2 - 4*a^2*c))*log(2*c*x + sqrt(1/2)*
(b^2 - 4*a*c - (a*b^3 - 4*a^2*b*c)/sqrt(a^2*b^2 - 4*a^3*c))*sqrt(-(b + (a*b^2 - 4*a^2*c)/sqrt(a^2*b^2 - 4*a^3*
c))/(a*b^2 - 4*a^2*c))) + 1/2*sqrt(1/2)*sqrt(-(b + (a*b^2 - 4*a^2*c)/sqrt(a^2*b^2 - 4*a^3*c))/(a*b^2 - 4*a^2*c
))*log(2*c*x - sqrt(1/2)*(b^2 - 4*a*c - (a*b^3 - 4*a^2*b*c)/sqrt(a^2*b^2 - 4*a^3*c))*sqrt(-(b + (a*b^2 - 4*a^2
*c)/sqrt(a^2*b^2 - 4*a^3*c))/(a*b^2 - 4*a^2*c))) - 1/2*sqrt(1/2)*sqrt(-(b - (a*b^2 - 4*a^2*c)/sqrt(a^2*b^2 - 4
*a^3*c))/(a*b^2 - 4*a^2*c))*log(2*c*x + sqrt(1/2)*(b^2 - 4*a*c + (a*b^3 - 4*a^2*b*c)/sqrt(a^2*b^2 - 4*a^3*c))*
sqrt(-(b - (a*b^2 - 4*a^2*c)/sqrt(a^2*b^2 - 4*a^3*c))/(a*b^2 - 4*a^2*c))) + 1/2*sqrt(1/2)*sqrt(-(b - (a*b^2 -
4*a^2*c)/sqrt(a^2*b^2 - 4*a^3*c))/(a*b^2 - 4*a^2*c))*log(2*c*x - sqrt(1/2)*(b^2 - 4*a*c + (a*b^3 - 4*a^2*b*c)/
sqrt(a^2*b^2 - 4*a^3*c))*sqrt(-(b - (a*b^2 - 4*a^2*c)/sqrt(a^2*b^2 - 4*a^3*c))/(a*b^2 - 4*a^2*c)))

Sympy [A] (verification not implemented)

Time = 0.60 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.58 \[ \int \frac {x}{a x+b x^3+c x^5} \, dx=\operatorname {RootSum} {\left (t^{4} \cdot \left (256 a^{3} c^{2} - 128 a^{2} b^{2} c + 16 a b^{4}\right ) + t^{2} \left (- 16 a b c + 4 b^{3}\right ) + c, \left ( t \mapsto t \log {\left (x + \frac {32 t^{3} a^{2} b c - 8 t^{3} a b^{3} + 4 t a c - 2 t b^{2}}{c} \right )} \right )\right )} \]

[In]

integrate(x/(c*x**5+b*x**3+a*x),x)

[Out]

RootSum(_t**4*(256*a**3*c**2 - 128*a**2*b**2*c + 16*a*b**4) + _t**2*(-16*a*b*c + 4*b**3) + c, Lambda(_t, _t*lo
g(x + (32*_t**3*a**2*b*c - 8*_t**3*a*b**3 + 4*_t*a*c - 2*_t*b**2)/c)))

Maxima [F]

\[ \int \frac {x}{a x+b x^3+c x^5} \, dx=\int { \frac {x}{c x^{5} + b x^{3} + a x} \,d x } \]

[In]

integrate(x/(c*x^5+b*x^3+a*x),x, algorithm="maxima")

[Out]

integrate(x/(c*x^5 + b*x^3 + a*x), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1024 vs. \(2 (114) = 228\).

Time = 0.59 (sec) , antiderivative size = 1024, normalized size of antiderivative = 6.83 \[ \int \frac {x}{a x+b x^3+c x^5} \, dx=\frac {{\left (\sqrt {2} \sqrt {b c + \sqrt {b^{2} - 4 \, a c} c} b^{4} - 8 \, \sqrt {2} \sqrt {b c + \sqrt {b^{2} - 4 \, a c} c} a b^{2} c - 2 \, \sqrt {2} \sqrt {b c + \sqrt {b^{2} - 4 \, a c} c} b^{3} c - 2 \, b^{4} c + 16 \, \sqrt {2} \sqrt {b c + \sqrt {b^{2} - 4 \, a c} c} a^{2} c^{2} + 8 \, \sqrt {2} \sqrt {b c + \sqrt {b^{2} - 4 \, a c} c} a b c^{2} + \sqrt {2} \sqrt {b c + \sqrt {b^{2} - 4 \, a c} c} b^{2} c^{2} + 16 \, a b^{2} c^{2} - 2 \, b^{3} c^{2} - 4 \, \sqrt {2} \sqrt {b c + \sqrt {b^{2} - 4 \, a c} c} a c^{3} - 32 \, a^{2} c^{3} + 8 \, a b c^{3} + \sqrt {2} \sqrt {b^{2} - 4 \, a c} \sqrt {b c + \sqrt {b^{2} - 4 \, a c} c} b^{3} - 4 \, \sqrt {2} \sqrt {b^{2} - 4 \, a c} \sqrt {b c + \sqrt {b^{2} - 4 \, a c} c} a b c - 2 \, \sqrt {2} \sqrt {b^{2} - 4 \, a c} \sqrt {b c + \sqrt {b^{2} - 4 \, a c} c} b^{2} c + \sqrt {2} \sqrt {b^{2} - 4 \, a c} \sqrt {b c + \sqrt {b^{2} - 4 \, a c} c} b c^{2} + 2 \, {\left (b^{2} - 4 \, a c\right )} b^{2} c - 8 \, {\left (b^{2} - 4 \, a c\right )} a c^{2} + 2 \, {\left (b^{2} - 4 \, a c\right )} b c^{2}\right )} \arctan \left (\frac {2 \, \sqrt {\frac {1}{2}} x}{\sqrt {\frac {b + \sqrt {b^{2} - 4 \, a c}}{c}}}\right )}{4 \, {\left (a b^{4} - 8 \, a^{2} b^{2} c - 2 \, a b^{3} c + 16 \, a^{3} c^{2} + 8 \, a^{2} b c^{2} + a b^{2} c^{2} - 4 \, a^{2} c^{3}\right )} {\left | c \right |}} + \frac {{\left (\sqrt {2} \sqrt {b c - \sqrt {b^{2} - 4 \, a c} c} b^{4} - 8 \, \sqrt {2} \sqrt {b c - \sqrt {b^{2} - 4 \, a c} c} a b^{2} c - 2 \, \sqrt {2} \sqrt {b c - \sqrt {b^{2} - 4 \, a c} c} b^{3} c + 2 \, b^{4} c + 16 \, \sqrt {2} \sqrt {b c - \sqrt {b^{2} - 4 \, a c} c} a^{2} c^{2} + 8 \, \sqrt {2} \sqrt {b c - \sqrt {b^{2} - 4 \, a c} c} a b c^{2} + \sqrt {2} \sqrt {b c - \sqrt {b^{2} - 4 \, a c} c} b^{2} c^{2} - 16 \, a b^{2} c^{2} - 2 \, b^{3} c^{2} - 4 \, \sqrt {2} \sqrt {b c - \sqrt {b^{2} - 4 \, a c} c} a c^{3} + 32 \, a^{2} c^{3} + 8 \, a b c^{3} + \sqrt {2} \sqrt {b^{2} - 4 \, a c} \sqrt {b c - \sqrt {b^{2} - 4 \, a c} c} b^{3} - 4 \, \sqrt {2} \sqrt {b^{2} - 4 \, a c} \sqrt {b c - \sqrt {b^{2} - 4 \, a c} c} a b c - 2 \, \sqrt {2} \sqrt {b^{2} - 4 \, a c} \sqrt {b c - \sqrt {b^{2} - 4 \, a c} c} b^{2} c + \sqrt {2} \sqrt {b^{2} - 4 \, a c} \sqrt {b c - \sqrt {b^{2} - 4 \, a c} c} b c^{2} - 2 \, {\left (b^{2} - 4 \, a c\right )} b^{2} c + 8 \, {\left (b^{2} - 4 \, a c\right )} a c^{2} + 2 \, {\left (b^{2} - 4 \, a c\right )} b c^{2}\right )} \arctan \left (\frac {2 \, \sqrt {\frac {1}{2}} x}{\sqrt {\frac {b - \sqrt {b^{2} - 4 \, a c}}{c}}}\right )}{4 \, {\left (a b^{4} - 8 \, a^{2} b^{2} c - 2 \, a b^{3} c + 16 \, a^{3} c^{2} + 8 \, a^{2} b c^{2} + a b^{2} c^{2} - 4 \, a^{2} c^{3}\right )} {\left | c \right |}} \]

[In]

integrate(x/(c*x^5+b*x^3+a*x),x, algorithm="giac")

[Out]

1/4*(sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^4 - 8*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^2*c - 2*sqrt(
2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^3*c - 2*b^4*c + 16*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*c^2 + 8*sq
rt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c^2 + sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^2*c^2 + 16*a*b^2*c^2
 - 2*b^3*c^2 - 4*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*c^3 - 32*a^2*c^3 + 8*a*b*c^3 + sqrt(2)*sqrt(b^2 - 4
*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^3 - 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c
- 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^2*c + sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqr
t(b^2 - 4*a*c)*c)*b*c^2 + 2*(b^2 - 4*a*c)*b^2*c - 8*(b^2 - 4*a*c)*a*c^2 + 2*(b^2 - 4*a*c)*b*c^2)*arctan(2*sqrt
(1/2)*x/sqrt((b + sqrt(b^2 - 4*a*c))/c))/((a*b^4 - 8*a^2*b^2*c - 2*a*b^3*c + 16*a^3*c^2 + 8*a^2*b*c^2 + a*b^2*
c^2 - 4*a^2*c^3)*abs(c)) + 1/4*(sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^4 - 8*sqrt(2)*sqrt(b*c - sqrt(b^2 -
4*a*c)*c)*a*b^2*c - 2*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^3*c + 2*b^4*c + 16*sqrt(2)*sqrt(b*c - sqrt(b^2
 - 4*a*c)*c)*a^2*c^2 + 8*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b*c^2 + sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c
)*c)*b^2*c^2 - 16*a*b^2*c^2 - 2*b^3*c^2 - 4*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*c^3 + 32*a^2*c^3 + 8*a*b
*c^3 + sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^3 - 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c -
sqrt(b^2 - 4*a*c)*c)*a*b*c - 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^2*c + sqrt(2)*sqrt(
b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b*c^2 - 2*(b^2 - 4*a*c)*b^2*c + 8*(b^2 - 4*a*c)*a*c^2 + 2*(b^2 -
4*a*c)*b*c^2)*arctan(2*sqrt(1/2)*x/sqrt((b - sqrt(b^2 - 4*a*c))/c))/((a*b^4 - 8*a^2*b^2*c - 2*a*b^3*c + 16*a^3
*c^2 + 8*a^2*b*c^2 + a*b^2*c^2 - 4*a^2*c^3)*abs(c))

Mupad [B] (verification not implemented)

Time = 8.80 (sec) , antiderivative size = 763, normalized size of antiderivative = 5.09 \[ \int \frac {x}{a x+b x^3+c x^5} \, dx=-\mathrm {atan}\left (\frac {b^4\,x\,1{}\mathrm {i}+b\,x\,\sqrt {-64\,a^3\,c^3+48\,a^2\,b^2\,c^2-12\,a\,b^4\,c+b^6}\,1{}\mathrm {i}+a^2\,c^2\,x\,16{}\mathrm {i}-a\,b^2\,c\,x\,8{}\mathrm {i}}{4\,a\,b^4\,\sqrt {-\frac {b^3+\sqrt {-64\,a^3\,c^3+48\,a^2\,b^2\,c^2-12\,a\,b^4\,c+b^6}-4\,a\,b\,c}{128\,a^3\,c^2-64\,a^2\,b^2\,c+8\,a\,b^4}}+64\,a^3\,c^2\,\sqrt {-\frac {b^3+\sqrt {-64\,a^3\,c^3+48\,a^2\,b^2\,c^2-12\,a\,b^4\,c+b^6}-4\,a\,b\,c}{128\,a^3\,c^2-64\,a^2\,b^2\,c+8\,a\,b^4}}-32\,a^2\,b^2\,c\,\sqrt {-\frac {b^3+\sqrt {-64\,a^3\,c^3+48\,a^2\,b^2\,c^2-12\,a\,b^4\,c+b^6}-4\,a\,b\,c}{128\,a^3\,c^2-64\,a^2\,b^2\,c+8\,a\,b^4}}}\right )\,\sqrt {-\frac {b^3+\sqrt {-64\,a^3\,c^3+48\,a^2\,b^2\,c^2-12\,a\,b^4\,c+b^6}-4\,a\,b\,c}{128\,a^3\,c^2-64\,a^2\,b^2\,c+8\,a\,b^4}}\,2{}\mathrm {i}-\mathrm {atan}\left (\frac {b^4\,x\,1{}\mathrm {i}-b\,x\,\sqrt {-64\,a^3\,c^3+48\,a^2\,b^2\,c^2-12\,a\,b^4\,c+b^6}\,1{}\mathrm {i}+a^2\,c^2\,x\,16{}\mathrm {i}-a\,b^2\,c\,x\,8{}\mathrm {i}}{4\,a\,b^4\,\sqrt {\frac {\sqrt {-64\,a^3\,c^3+48\,a^2\,b^2\,c^2-12\,a\,b^4\,c+b^6}-b^3+4\,a\,b\,c}{128\,a^3\,c^2-64\,a^2\,b^2\,c+8\,a\,b^4}}+64\,a^3\,c^2\,\sqrt {\frac {\sqrt {-64\,a^3\,c^3+48\,a^2\,b^2\,c^2-12\,a\,b^4\,c+b^6}-b^3+4\,a\,b\,c}{128\,a^3\,c^2-64\,a^2\,b^2\,c+8\,a\,b^4}}-32\,a^2\,b^2\,c\,\sqrt {\frac {\sqrt {-64\,a^3\,c^3+48\,a^2\,b^2\,c^2-12\,a\,b^4\,c+b^6}-b^3+4\,a\,b\,c}{128\,a^3\,c^2-64\,a^2\,b^2\,c+8\,a\,b^4}}}\right )\,\sqrt {\frac {\sqrt {-64\,a^3\,c^3+48\,a^2\,b^2\,c^2-12\,a\,b^4\,c+b^6}-b^3+4\,a\,b\,c}{128\,a^3\,c^2-64\,a^2\,b^2\,c+8\,a\,b^4}}\,2{}\mathrm {i} \]

[In]

int(x/(a*x + b*x^3 + c*x^5),x)

[Out]

- atan((b^4*x*1i + b*x*(b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c)^(1/2)*1i + a^2*c^2*x*16i - a*b^2*c*x*8
i)/(4*a*b^4*(-(b^3 + (b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c)^(1/2) - 4*a*b*c)/(8*a*b^4 + 128*a^3*c^2
- 64*a^2*b^2*c))^(1/2) + 64*a^3*c^2*(-(b^3 + (b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c)^(1/2) - 4*a*b*c)
/(8*a*b^4 + 128*a^3*c^2 - 64*a^2*b^2*c))^(1/2) - 32*a^2*b^2*c*(-(b^3 + (b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12
*a*b^4*c)^(1/2) - 4*a*b*c)/(8*a*b^4 + 128*a^3*c^2 - 64*a^2*b^2*c))^(1/2)))*(-(b^3 + (b^6 - 64*a^3*c^3 + 48*a^2
*b^2*c^2 - 12*a*b^4*c)^(1/2) - 4*a*b*c)/(8*a*b^4 + 128*a^3*c^2 - 64*a^2*b^2*c))^(1/2)*2i - atan((b^4*x*1i - b*
x*(b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c)^(1/2)*1i + a^2*c^2*x*16i - a*b^2*c*x*8i)/(4*a*b^4*(((b^6 -
64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c)^(1/2) - b^3 + 4*a*b*c)/(8*a*b^4 + 128*a^3*c^2 - 64*a^2*b^2*c))^(1/2)
 + 64*a^3*c^2*(((b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c)^(1/2) - b^3 + 4*a*b*c)/(8*a*b^4 + 128*a^3*c^2
 - 64*a^2*b^2*c))^(1/2) - 32*a^2*b^2*c*(((b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c)^(1/2) - b^3 + 4*a*b*
c)/(8*a*b^4 + 128*a^3*c^2 - 64*a^2*b^2*c))^(1/2)))*(((b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c)^(1/2) -
b^3 + 4*a*b*c)/(8*a*b^4 + 128*a^3*c^2 - 64*a^2*b^2*c))^(1/2)*2i